THE DOLOMITES
UNESCO WORLD HERITAGE
Inclusion in the UNESCO World Heritage list

On June 26th the Dolomites have been included in the World Heritage List because of their exceptional beauty and unique landscape, together with their scientific importance from the geological and geomorphological point of view. Under an international treaty called the Convention concerning the Protection of World Cultural and Natural Heritage, adopted in 1972, UNESCO has so far approved 689 cultural, 176 natural and 25 mixed sites in 148 countries around the world. The inclusion of the Dolomites in the World Heritage List is therefore an extraordinary form of recognition, but it also implies a strong commitment and responsibility for the safeguarding and sustainable development of this wonderful region.
It is beyond any doubt whatsoever that the Dolomite Mountains are of extraordinary beauty. With their inclusion on the World Heritage List, the nine Dolomite ranges now represent the uniqueness of this mountain area. The awarding of World Heritage status fills us with pride and in this publication we aim to illustrate the Dolomite landscape, highlighting the significance of the Dolomites at global level, as well as their extraordinary natural beauty and aesthetic importance. The commitment to achieve this has involved years of work, carried out with the support of the administrative and technical divisions of the Province in question and with the scientific input of experts and scholars in the fields of geology and landscape. Consultation at local, national and international level was crucial in defining the principles and objectives of management within the context of a unified strategy. The decision to entrust a single organisation with responsibility for managing this UNESCO property was intended to ensure the protection, enhancement and promotion of this World Heritage property, respecting the values leading to its inclusion in the World Heritage List. As a precious heritage that generations of people who live, visit and appreciate these mountains are called upon to hand down, the Dolomites require a full awareness of the extraordinary nature of this landscape, in the belief that genuine respect for this natural asset can only be achieved by sharing the value of this priceless heritage.

Stefania Prestigiacomo
Minister for the Environment and Safeguarding of the Land and Seas
On 25 August 2009, UNESCO recognition of the Dolomites as a WHS was celebrated at Auronzo di Cadore in the presence of the President of the Republic, Giorgio Napolitano and the Minister of the Environment, Stefania Prestigiacomo.

A precious opportunity
UNESCO recognition of the Dolomites was a major success for Italy. It was the result of lengthy work which began during the previous Berlusconi government and gives this miracle of nature added value: the possibility of combining environmental protection and promotion, through a programme of sustainable development which also oversees responsible tourism. Our country is an open-air museum which should encourage better use of its treasures, without hiding them away, and the trademark of world quality awarded to the Dolomites offers a precious opportunity to fully enjoy our natural heritage, as well as paying tributes to successful policy for the conservation of our environmental assets.
Le Dolomiti, montagne delle identità

Il percorso della candidatura, avviato nel dicembre 2004 dalle Province di Belluno, Bolzano, Pordenone, Trento e Udine e dalle Regioni di riferimento, si è articolato attraverso varie fasi di approfondimento e di valutazione, rivestendo una duplice funzione che si adatta bene naturalmente a fette identitarie di diverso ordine.

L'unicità di queste montagne, riconosciuta dall'UNESCO, sta nel loro valore naturale e paesaggistico, considerato come l'espressione più profonda e più incisiva dell'identità del territorio, come sintesi di vii e di ambiente, di attività e di vita, sottolineati in quanto ecosistema e rispetto a essi, di valori etnico e di carattere culturale. In queste peculiarità risiede il valore universale che l'UNESCO ha riconosciuto.

Il percorso della candidatura, avviato nel dicembre 2004 dallo Stato Italiano e da cinque Province (Belluno, Bolzano, Pordenone, Trento e Udine), si è articolato attraverso varie fasi di approfondimento e di valutazione, rivelando l'area dolomitica come un'area di grande rilevanza culturale.

La durata dei valori universali che l'UNESCO ha qui riconosciuto.

 NUOVA CONSCIENZA E RESPONSABILITÀ AMMINISTRATIVA PER GARANTIRE NEL TEMPO LA SPECIFICA E CULTURALE DEL TERRITORIO DOLOMITICO.

Tutti temi da affrontare con la mente nuova e l'anima nuova. La cultura è un'occasione straordinaria per ragionare sui temi della montagna e sulla diversità delle identità. Qui il senso del limite – assieme alla valorizzazione del territorio con diversi usi, sedimentati in queste vallate nel corso dei secoli e, rispetto a chi, nell'area dolomitica...
The Dolomites offer an extraordinary collection of vertical sculptures, such as needles, spires, towers and pinnacles.

Giusi del Vecchio, Schiara.

The way in which these natural forms take on specific, sculptural shapes means that these mountains resemble the ruins of ancient buildings or distant civilizations.

The Campanile di Val Montanaia represents a wonder of nature without comparison in the whole of the Alps.”

(Tita Piaz)

“Campanil Basso, Brenta.

To the left – a continuation, indeed, of the Rochetta – the Bec di Mezzodi and the ridge of Beccolungo [Croda da Lago], stand out like a row of jagged teeth.”

Amelia B. Edwards, Untrodden Peaks and Unfrequented Valleys, 1872

Croda da Lago and Lastoi di Formin.
The Dolomites as serial property

The Dolomites are included in the list as a serial property, as they represent a unified whole, albeit dislocated and complex, both in terms of the geography and landscape and from a geological-geomorphological point of view. The various Dolomitic ranges represent a combination of exceptional geological features and landscapes, characterized by extraordinary representativeness and high levels of protection, and are linked through an extensive genetic and aesthetic network of relations.

The pre-existence of clear protective measures was one of the requirements established by UNESCO for inclusion in the list and for this reason it was not possible to include certain mountain ranges, such as the Sella or Sassolungo/Langkofel Group, even if they are representative of the geology and landscape of the Dolomites.

The nine mountain systems making up this extraordinary "fossil archipelago" are thus contained within five provinces (Belluno, Bolzano/Bozen, Pordenone, Trento, and Udine), an area of approximately 142,000 hectares, in which four different and officially recognised languages (Italian, German, Ladin and Friulan) are spoken. The five provinces are characterised by a complex and varied institutional and administrative framework, because their background within the context of European history has been very different.

The Dolomites are widely regarded as being among the most attractive mountain landscapes in the world. Their intrinsic beauty derives from a variety of spectacular vertical forms such as pinnacles, spires and towers, with contrasting horizontal surfaces including ledges, crags and plateaus, all of which rise abruptly above extensive talus deposits and more gentle foothills. A great diversity of colours is provided by the contrasts between the bare pale-coloured rock surfaces and the forests and meadows below. The mountains rise as peaks with intervening ravines, in some places standing isolated but in others forming sweeping panoramas. Some of the rock cliffs here rise more than 1,500 m and are among the highest limestone walls found anywhere in the world. The distinctive scenery of the Dolomites has become the archetype of a "dolomitic landscape.

The Dolomites are of international significance for geomorphology, as the classic site for the development of mountains in dolomitic limestone. The area presents a wide range of landforms related to erosion, tectonism and glaciation. The quantity and concentration of extremely varied limestone formations is extraordinary in a global context, including peaks, towers, pinnacles and some of the highest vertical rock walls in the world. The geological values are also of international significance, notably the evidence of Mesozoic carbonate platforms, or "fossilized atolls", particularly in terms of the evidence they provide of the rotation of the bio-constructors after the Permian/Triassic boundary, and the preservation of the relationships between the early reefs and their surrounding basins. The Dolomites also include several internationally important type sections for the stratigraphy of the Triassic Period. The scientific values of the property are also supported by the evidence of a long history of study and recognition at the international level. Taken together, the combination of geomorphological and geological values creates a property of global significance.

What makes the Dolomites unique in the world?

The Dolomites are widely regarded as being among the most attractive mountain landscapes in the world. Their intrinsic beauty derives from a variety of spectacular vertical forms such as pinnacles, spires and towers, with contrasting horizontal surfaces including ledges, crags and plateaus, all of which rise abruptly above extensive talus deposits and more gentle foothills. A great diversity of colours is provided by the contrasts between the bare pale-coloured rock surfaces and the forests and meadows below. The mountains rise as peaks with intervening ravines, in some places standing isolated but in others forming sweeping panoramas. Some of the rock cliffs here rise more than 1,500 m and are among the highest limestone walls found anywhere in the world. The distinctive scenery of the Dolomites has become the archetype of a "dolomitic landscape."

The Dolomites are of international significance for geomorphology, as the classic site for the development of mountains in dolomitic limestone. The area presents a wide range of landforms related to erosion, tectonism and glaciation. The quantity and concentration of extremely varied limestone formations is extraordinary in a global context, including peaks, towers, pinnacles and some of the highest vertical rock walls in the world. The geological values are also of international significance, notably the evidence of Mesozoic carbonate platforms, or “fossilized atolls”, particularly in terms of the evidence they provide of the rotation of the bio-constructors after the Permian/Triassic boundary, and the preservation of the relationships between the early reefs and their surrounding basins. The Dolomites also include several internationally important type sections for the stratigraphy of the Triassic Period. The scientific values of the property are also supported by the evidence of a long history of study and recognition at the international level. Taken together, the combination of geomorphological and geological values creates a property of global significance.
The integrity of the Dolomites

All the sites included in the World Heritage List must satisfy conditions relating to integrity. Integrity measures to what extent the natural site is whole and intact and the qualitative characteristics.

“The nine component parts that make up the Dolomites property, include all areas that are essential for maintaining the beauty of the property and are or must be of the key international and intercontinental earth sciences elements in their natural relationships. The property comprises parts of a national park, several regional and provincial nature parks, Nature 2000 sites and a natural monument. Better since have been defined for each component part to help protect it from threats from outside its boundaries. The natural landscapes and processes that are essential to maintaining the property’s values and integrity are in a good state of conservation and largely unaffected by downsizing.” (UNESCO, Statement of Outstanding Universal Value, Integrity)

The integrity of the Dolomites

What does inclusion in the World Heritage List mean?

For a property to be included in the World Heritage List, it must possess “outstanding universal value”. It must therefore be unalterably representative of the cultural and natural riches of our planet, to the extent that it represents an essential point of reference not only for the territory in which it is situated, but also for the whole of humanity. The properties included in the World Heritage List are selected as the best evidence of the world’s natural and cultural heritage, to be handed down to future generations. This is in the purpose of the Convention concerning the Protection of the World Cultural and Natural Heritage (UNESCO, 1972), which today sees 186 countries coming together with this common commitment. The prestige gained by countries with properties included in the List acts as a catalyst, strengthening a sense of responsibility towards the asset for which they are responsible. The properties included in the List must indeed have a management strategy, setting out measures for conservation and monitoring, whose effectiveness is monitored through reports every three years.

Why is the inclusion of the Dolomites in the World Heritage List important?

Inclusion is the result of a strict selection process at a world level, in which assertion of the uniqueness and universal value of geological, geomorphological aspects and the aesthetic landscapes of the Dolomites corresponds with recognition that these are adequately represented and protected.

Following recognition, the administrations’ responsibility and commitment to ensuring these universal values over time, directed not merely at their own territory but at the entire world, lead to a different awareness of their position in the global context and provide a stimulus for reflecting on issues related to the mountains (such as cultural uniqueness, landscapes, geological heritage, sustainable development and tourism) with an openness and willingness to discuss.
The sublime beauty of the Pale Mountains

The Dolomites have always had an enormous impact on the imagination of all those who have seen them. The imposing nature of these stone giants has inspired the people inhabiting them from prehistoric times, to the extent that they have become an essential part of their cultural identity. Then, after they were “discovered” by science, romantic travellers recognised them as the embodiment of those ideals that landscape painters had hitherto only imagined. No one has remained immune to their extraordinary fascination, to the extent so that they are universally considered “the most beautiful mountains on Earth”. So why are the Dolomites so beautiful? What is the secret of their extraordinary appeal?

Aesthetic importance

The Dolomites are considered a global point of reference for the aesthetics of the sublime. For this field of philosophy, developed in the years immediately preceding the “discovery” of these mountains, the peaks of the Dolomites became a model of fundamental importance and therefore contributed to the definition of the modern concept of natural beauty.

The very first pictures of these mountains were not paintings or portraits but descriptions, words that told of extraordinary visions and powerful emotions that invaded and occupied the mind – with an almost inescapable force – as well as the first scientific reports and early travellers’ accounts. The words with which the characteristics of the Dolomites were expressed correspond exactly to the categories of the sublime: verticality, grandeur, monumentality, the torment of forms, essential purity, the intensity of colours, astonishment, mystical asceticism and transcendence.

The reference to the sublime is very important. The sublime is in fact an aesthetic category expressly referring to nature. The famous Red Book by John Murray, dating back to 1837 (the first Dolomites travel guide in English), uses precisely the adjective “sublime” to define the Dolomite landscape:

“Altogether they impart an air of novelty and sublime grandeur to the scene which can only be appreciated by those who have viewed it.”

Scenic values

The original landscape analysis method developed specifically in relation to the nomination and considered to be innovative by the advisory bodies of UNESCO, highlighted the fact that the Dolomites represent a universal archetype in terms of the mountain landscape: the “Dolomite landscape”.

There are a number of key characteristics in this kind of landscape, represented first of all by an extremely complex topography, distinguished by the frequency of separate mountain groups set side by side in a particularly restricted environment. Secondly there is a universal variety of forms, both vertical (rifts, valleys, spires, precipices, towers and jaggs) and horizontal (rocks, platforms, cliffs, spires, amphitheatres). However, the Dolomites are known above all for the exceptional variety of colours and the extraordinary contrast between the soft lines of the meadows and the completely bare mountain peaks which spring up unexpectedly. Furthermore, the possibility of classifying these “karstic structures” into recognisable geometric figures and specific volumetric shapes (prisms, parallelepipeds, cones) has led to an interpretation of these mountains as artificial structures rather than simple natural expressions.

The imaginative vision of the first inhabitants led them to liken the mountains to the vestiges of a legendary epic world, thus projecting the region into a mythical dimension. More recently, the gigantic nature of their “architecture” and the fantastic relationships in scale led the intellectual romantics to imagine them as “les plus belles constructions du monde”. Their evocative power is such that their name has also been coveted by other mountains elsewhere. There are indeed “Dolomites” in France (Dolomites Françaises), Austria (Dornten Dolomiten, Salzburger Dolomiten), Switzerland (Unterengadiner Dolomiten), elsewhere in Italy (Lucanian Dolomites, Sicilian Dolomites), Norway (the Porsangerdolomitt) and Slovenia (Polhograjski Dolomiti). Like ancient monuments or modern skyscrapers, the “carbonate buildings” of the Dolomites have colossal proportions and are characterized by isolated forms, perfectly vertical faces and sharply-defined lines.
Full opposite to us rose a colossal rock, one of the most prodigious monuments of Nature’s forces. Its lower portion rose in diminishing stories like the Tower of Babel of old Bible pictures. Above it was a perfect precipice, an upright block, the top of which was 4,000 to 4,500 feet above our heads. Behind this gigantic keep a vast mountain fortress stretched out its long lines of turrets and bastions. But as we approached its base the great tower rose alone and unsupported, and the boldness of its outline became almost incredible…; it combines to a great extent the noble solidity of the Swiss peak with the peculiar upright structure which gives dolomite its strange resemblance to human architecture. …

On our left was a second massive rock castle, the Cima di Brenta, connected with the Cima Tosa by the Fulmini (sic) di Brenta, a long line of flame-like pinnacles of the strangest shapes, some of them seeming to bulge near the top like a Russian steeple.

(Douglas William Freshfield, The Italian Alps, 1875)

Natural phenomena

The visual excitement is amplified by a natural phenomenon specific to these mountains, the so-called Enrosadira. Due to the specific structure and composition of the Dolomite rock, during the day the rock faces react dramatically to changes in the light. They are characterised by strong warm colours (oranges, reds and purples) at sunrise and sunset, but pale and manoeuvred in the middle of the day where at high noon and in the moonlight the mountains have a cold, unearthly aspect. This has given rise to the name Monti Fulmini – the Flame Mountains. Furthermore, it should be noted that while the Dolomites do not have the highest peaks, the biggest glaciers or the most extensive areas of wilderness, they represent the only area in the world where pale dolomite and dark volcaniclastic rocks are found together.

The Dolomite region is also characterised by an unusual concentration of peaks exceeding 3,000 metres (around one hundred) and a remarkably large number of small glaciers and perennial snowfields at relatively low altitude. Vertical cliffs of incredible height (from 800 to 1,600 metres) combine with deep canyons (from 500 to 1,500 metres), offering a morphological diversity which enriches the natural beauty of the Dolomites.

Above: dawn over the Tre Cime di Lavaredo/Drei Zinnen.
On the right: the profile of the Sciliar/Schlern with the Santner and Euringer peaks in the midst of the clouds.

“Full opposite to us, a colossal rock one of the most prodigious monuments of Nature’s forces. Its lower portion rose in diminishing steps like the Tower of Babel of old Bible pictures. Above it was a perfect precipice, its top 4,000-4,500 feet above our heads. Behind this gigantic keep a vast mountain fortress stretched out its long lines of turrets and bastions. But as we approached its base the great tower rose alone and unsupported, and the boldness of its outline became almost incredible; it combines to a great extent the noble solidity of the Swiss peak with the peculiar upright structure which gives dolomite its strange resemblance to human architecture. …

On our left was a second massive rock castle, the Cima di Brenta, connected with the Cima Tosa by the Fulmini (sic) di Brenta, a long line of flame-like pinnacles of the strangest shapes, some of them seeming to bulge near the top like a Russian steeple.”

(Douglas William Freshfield, The Italian Alps, 1875)
The Dolomite landscape can be broken down into a series of main landscape units to show the more common, recognisable elementary structures, of all the region. These landscape units are the outcome of genetic and aesthetic relations, namely the result of close links between geological origin, morphological structure and the nature of the vegetation. The typical morphological components, representative of the whole of the Dolomite landscape, are identified according to a vertical sequence (from the bottom up):

1. extensive, gently undulating bedrock of polygenetic origin;
2. imposing mantles of detritus surrounding the bases of the carbonate structures;
3. horizontal structural elements interrupting the rock faces, creating vast terraces and strong colour contrasts;
4. perfectly vertical, great white rock masses, with exceptionally varied shapes, rising unexpectedly from the ground.

These morphological characteristics are linked to the vegetation, together with other landscape values such as biodiversity, variety of natural habitats and richness of plant associations, fluctuations in density and colour according to the seasons.

Since the nominated property is in high mountain territory, the vegetation is concentrated into two strips corresponding to the climatic zones close to and above the altitude of the tree line. The former corresponds to the conifer forests and subalpine shrublands; the latter to the Alpine grasslands and the various plant associations on the crags and scree, many of them exclusive to the Dolomites. The overall structure of the landscape is however dynamic and depends on both natural and human factors.
A journey through time and space

The special link with geology and the significance of this aspect is highlighted by the very name of these mountains, deriving from the dolomite mineral which was discovered here by the French scientist Déodat de Dolomieu (1750-1801). From the dawn of geological research, the Dolomites have represented a point of reference at global level thanks to the extraordinary accessibility of these mountains and the clarity with which the geological phenomena can be observed. Some of the founding principles of Earth Science were deduced here. Even today, scientists and nourishers from all over the world come to the Dolomites to compare notes and study the history of the Earth more closely “in the field”, confirming the continuing interest in these extraordinary mountains. Another fundamental aspect determining the overall value of the Dolomites from a geological point of view, is the fact that they illustrate a significant part of the Earth’s history in a continuous and very detailed manner. In particular, the period between the Upper Permian and the Triassic (between about 270 and 200 million years ago) can be seen here in spectacular detail. From a historical perspective too, many significant time intervals in the Triassic were defined in the Dolomites, underlining the importance of these mountains as a global reference point: Ladinian, (from “Ladin”, the language spoken in the Dolomites), Fassanian (from the Val di Fassa) and Cordevolian (from the Valle del Cordevole). However, perhaps the most characteristic geological aspect is linked to the presence of ancient fossil atolls. Indeed, the Dolomites represent one of the best conserved examples of fossil reefs and the tropical environments of the Mesozoic, including fossil evidence of the organisms that formed them.

The succession of rocks illustrates the resurgence and evolution of life over time, following the most extensive extinction known to have taken place in the geological eras, occurring between the Permian and the Triassic (251 million years ago) and leading to the disappearance of more than 90 percent of living species. Furthermore, the interaction between the atolls and coral reefs in the Triassic and the massive volcanic eruptions that characterised this distant period are clearly and dramatically visible here. The lack of tectonic deformation, the impressive outcrops and the thick layers of sediment accumulated along with considerable lateral continuity, highlight another significant characteristic of the geology of the Dolomites: the possibility of interpreting and recounting geological history over time (vertically) and in space (horizontally). In particular, a vertical interpretation would seem to flow like the pages of a giant stone book, revealing the history of the Earth, whilst on the horizontal plane one can physically experience the ancient geography of the ancient basins and islands. It is possible to walk over the ancient lagoon, viewing the corals and sponges on its banks, where the waves broke and making one’s way down the old slopes to reach the bottom of the sea, a thousand meters below. The Dolomites are thus extraordinary mountains, the nine ranges making them up offering a truly unique and exceptional collection of geological features of global significance.

In 1789 and 1790, the French naturalist Déodat de Dolomieu travelled to the Southern Tyrol several times. In 1791 he reported the finding of a rock that he had analysed in 1792 by the Swiss mineralogist Théodore-Nicolas De Saussure, leading to the discovery of a new mineral. In 1794, to pay homage to its discoverer, Richard Kirwan suggested that the mineral be called “Dolomite”.

The western side of the Catinaccio/Rosengarten group represents one of the best preserved tropical reefs. It is an open-air research laboratory, where one can study and understand the relations between the lagoons, barrier reefs, escarpments and the sediments deposited on the seabed.

On the top: fossil coral from the San Cassiano Formation. On the right: the current situation and how the tropical atolls must have been like, separated by seas hundreds of metres deep.
The red dots show the main phases of sediment occurring on the boundary above. Between the Permian and Triassic around 250 million years ago, the earth’s atmosphere and climate were very different to what we have today. The sea rose, vast plains and shallow seas were replaced by land. In the Permian, the geography began to change, as the evidence for a supercontinent called Pangea, which was joined to Africa and Europe. In the Mesozoic era, from the Permian to the Cretaceous, Pangea finally broke up, while new land masses were formed, which eventually evolved into today’s continents.

The sea became shallower, and the landmasses were pushed up. This led to a period of time when the sea receded, and the continents emerged from underwater. For centuries, the landmasses were formed by the depositing of large amounts of sediment. This process led to the formation of mountains, which are now known as the Dolomites.

The fundamental essence of the Dolomites lies in the rocks and the extraordinary events shaping them. Their scale is therefore something that could be described as a result of the geological past. This can be traced back at least 280 million years, to a time of a great period called the Tertiary, existing in a tropical environment between Europe and Africa, at that time united by the Pangaea. On the basis of the evidence, it is probable that the Tertiary period saw the beginning of the present mountain range, with the evolution of these events marking the beginning of the present-day geographical features of the Dolomites.

During the Early Norian (around 228 million years ago) a new phase of widespread sedimentation occurred in the Dolomites region, leading to the formation of a new phase of sedimentation. This phase of sedimentation lasted for around 10 million years, during which time (about 236 million years ago), the volcanoes ceased their activities, the final phase of activity being represented by the footprints found in the Dolomitic rock. This phase of sedimentation is marked by the presence of the tectonic deformation, which was the result of the collision between Africa and Europe and the resulting deformation of the ancient Tethys sediment. In this scenario the resulting deformation of the ancient Tethys sediment led to the formation of a new phase of sedimentation, which eventually led to the formation of the modern-day Dolomites. The processes that led to the formation of the Dolomites are still ongoing, and are a result of the continuous interaction between the tectonic plate and the surrounding regions.

The fundamental essence of the Dolomites lies in the rocks and the extraordinary events shaping them. Their scale is therefore something that could be described as a result of the geographical past. This can be traced back at least 280 million years, to a time of a great period called the Tertiary, existing in a tropical environment between Europe and Africa, at that time united by the Pangaea. On the basis of the evidence, it is probable that the Tertiary period saw the beginning of the present mountain range, with the evolution of these events marking the beginning of the present-day geographical features of the Dolomites.

During the Early Norian (around 228 million years ago) a new phase of widespread sedimentation occurred in the Dolomites region, leading to the formation of a new phase of sedimentation. This phase of sedimentation lasted for around 10 million years, during which time (about 236 million years ago), the volcanoes ceased their activities, the final phase of activity being represented by the footprints found in the Dolomitic rock. This phase of sedimentation is marked by the presence of the tectonic deformation, which was the result of the collision between Africa and Europe and the resulting deformation of the ancient Tethys sediment. In this scenario the resulting deformation of the ancient Tethys sediment led to the formation of a new phase of sedimentation, which eventually led to the formation of the modern-day Dolomites. The processes that led to the formation of the Dolomites are still ongoing, and are a result of the continuous interaction between the tectonic plate and the surrounding regions.

The fundamental essence of the Dolomites lies in the rocks and the extraordinary events shaping them. Their scale is therefore something that could be described as a result of the geographical past. This can be traced back at least 280 million years, to a time of a great period called the Tertiary, existing in a tropical environment between Europe and Africa, at that time united by the Pangaea. On the basis of the evidence, it is probable that the Tertiary period saw the beginning of the present mountain range, with the evolution of these events marking the beginning of the present-day geographical features of the Dolomites.

During the Early Norian (around 228 million years ago) a new phase of widespread sedimentation occurred in the Dolomites region, leading to the formation of a new phase of sedimentation. This phase of sedimentation lasted for around 10 million years, during which time (about 236 million years ago), the volcanoes ceased their activities, the final phase of activity being represented by the footprints found in the Dolomitic rock. This phase of sedimentation is marked by the presence of the tectonic deformation, which was the result of the collision between Africa and Europe and the resulting deformation of the ancient Tethys sediment. In this scenario the resulting deformation of the ancient Tethys sediment led to the formation of a new phase of sedimentation, which eventually led to the formation of the modern-day Dolomites. The processes that led to the formation of the Dolomites are still ongoing, and are a result of the continuous interaction between the tectonic plate and the surrounding regions.

The fundamental essence of the Dolomites lies in the rocks and the extraordinary events shaping them. Their scale is therefore something that could be described as a result of the geographical past. This can be traced back at least 280 million years, to a time of a great period called the Tertiary, existing in a tropical environment between Europe and Africa, at that time united by the Pangaea. On the basis of the evidence, it is probable that the Tertiary period saw the beginning of the present mountain range, with the evolution of these events marking the beginning of the present-day geographical features of the Dolomites.

During the Early Norian (around 228 million years ago) a new phase of widespread sedimentation occurred in the Dolomites region, leading to the formation of a new phase of sedimentation. This phase of sedimentation lasted for around 10 million years, during which time (about 236 million years ago), the volcanoes ceased their activities, the final phase of activity being represented by the footprints found in the Dolomitic rock. This phase of sedimentation is marked by the presence of the tectonic deformation, which was the result of the collision between Africa and Europe and the resulting deformation of the ancient Tethys sediment. In this scenario the resulting deformation of the ancient Tethys sediment led to the formation of a new phase of sedimentation, which eventually led to the formation of the modern-day Dolomites. The processes that led to the formation of the Dolomites are still ongoing, and are a result of the continuous interaction between the tectonic plate and the surrounding regions.
The Dolomites are a collection and made up of various mountain ranges with a remarkable level of geomorphological variety. They contain an extensive and overwhelming array of phenomena, relating above all from their complex geographical structure and from past and present climatic conditions, with peaks, valleys, pinnacles, defile and defile escarpments, ridges and spurs of hornic rock, gentiles of steep valley, strata, scree slopes and talus cones, debris from landslides, terraces, lakes and gorges carved out by streams.

An original way of interpreting the forms in these landscapes is linked to their morphological peculiarity, both in relation to differences between the various mountainous areas and in terms of the genetic variability. First of all, in global terms they have monumental, original and spectacular qualities distinguishing them from all other mountains in the world. Furthermore, in the context of the alpine environment, they offer a particularly varied, complex and ordnate range of morphological features, with structural forms linked above all to distant and more recent movement of the Earth’s crust (for example escarpments and fault lines, ridges cut by fractures, slide scarps or collapse) or related to types of rock (igneous peaks overlooking less steep slopes, plateaus, ledges).

These phenomena cross over with one another and due to their variety and complexity, offer an almost complete educational and scientific case study within the Dolomites. The Morphology is linked either to current climatic conditions or to processes acting at a greater or lesser pace in the area. Some of the phenomena related to pre-glacial times or other temperate periods can be found, but there are also all forms of glacial erosion and accumulation: niches mantled by drift and striation by the action of glaciers, hanging valleys, crevices and meander deposits, electron of ancient forest horizons, evidence of the pressures acting on the various rock layers. The present day glacial current climatic conditions is linked above all to frosting and thawing and the force of gravity and erosion, such as the process of rock breakage or the breaking of ancient permafrost can lead to landslides resulting from new freezing-thawing phenomena, such as water and water absorption. More recent breakage of rocks are further fragmented as a result of the expansion of icy water and collapse, as well as moraine debris which, in the case of ice sheets, have left behind debris of all possible types, including clearly visible and spectacular examples which have now become part of international scientific literature.

At local level, another example is offered by the vast range of karst formations, both superficial such as common forms, similes and springs, and subsurface, cavities, caves and water holes. Ultimately, once again the fact that the Dolomites represent an unique air laboratory at high-altitude, with a geomorphological heritage of exceptional global scale, which is one of the most extraordinary and accessible in the world, ideal for research, educational purposes and for developing Earth Science theories.

And evolution still continues…

The geomorphological evolution we can observe is linked to various causes: characteristics of the rocks and theirstructural discontinuity, current climatic conditions, more or less intense weather conditions and human activities. One can note that morphological features from the past still condition today’s landscape: large watersheds with high erosional power plunge down from hanging valleys of glacial origin; moraine debris is repeatedly subject to processes of deglaciation and collapse: the thawing of ancient permafrost can lead to landslides resulting from new freezing-thawing phenomena, such as water and water absorption. More recent breakage of rocks are further fragmented as a result of the expansion of icy water and collapse, as well as moraine debris which, in the case of ice sheets, have left behind debris of all possible types, including clearly visible and spectacular examples which have now become part of international scientific literature.

At local level, another example is offered by the vast range of karst formations, both superficial such as common forms, similes and springs, and subsurface, cavities, caves and water holes. Ultimately, once again the fact that the Dolomites represent an unique air laboratory at high-altitude, with a geomorphological heritage of exceptional global scale, which is one of the most extraordinary and accessible in the world, ideal for research, educational purposes and for developing Earth Science theories.

The tortuous combination of walls, crests, rock, gentle slopes of clayey terrain, strata, scree slopes and talus cones, debris from landslides, terraces, lakes and gorges carved out by streams. An original way of interpreting the forms in these landscapes is linked to their morphological peculiarity, both in relation to differences between the various mountainous areas and in terms of the genetic variability. First of all, in global terms they have monumental, original and spectacular qualities distinguishing them from all other mountains in the world. Furthermore, in the context of the alpine environment, they offer a particularly varied, complex and ordnate range of morphological features, with structural forms linked above all to distant and more recent movement of the Earth’s crust (for example escarpments and fault lines, ridges cut by fractures, slide scarps or collapse) or related to types of rock (igneous peaks overlooking less steep slopes, plateaus, ledges).

These phenomena cross over with one another and due to their variety and complexity, offer an almost complete educational and scientific case study within the Dolomites. The Morphology is linked either to current climatic conditions or to processes acting at a greater or lesser pace in the area. Some of the phenomena related to pre-glacial times or other temperate periods can be found, but there are also all forms of glacial erosion and accumulation: niches mantled by drift and striation by the action of glaciers, hanging valleys, crevices and meander deposits, electron of ancient forest horizons, evidence of the pressures acting on the various rock layers. The present day glacial current climatic conditions is linked above all to frosting and thawing and the force of gravity and erosion, such as the process of rock breakage or the breaking of ancient permafrost can lead to landslides resulting from new freezing-thawing phenomena, such as water and water absorption. More recent breakage of rocks are further fragmented as a result of the expansion of icy water and collapse, as well as moraine debris which, in the case of ice sheets, have left behind debris of all possible types, including clearly visible and spectacular examples which have now become part of international scientific literature.

At local level, another example is offered by the vast range of karst formations, both superficial such as common forms, similes and springs, and subsurface, cavities, caves and water holes. Ultimately, once again the fact that the Dolomites represent an unique air laboratory at high-altitude, with a geomorphological heritage of exceptional global scale, which is one of the most extraordinary and accessible in the world, ideal for research, educational purposes and for developing Earth Science theories.
“...these mountains, whose peaks rise above the region of the clouds,... [are] made up of different species of rock. The bases, the thickness of which varies, incline towards a central point. Their prolongation leads to the formation of these sharp points, broken crests and jagged angles that characterise and indicate from afar mountains known as ‘primitive’.”

(Déodat de Dolomieu, letter to M. Picot de La Peyrouse, Malta, 30 January 1791)
This range makes up a vast elongated area running NW – SE, stretching down from Monte Penna to the Giau Pass, between the Valle del Boite, Val di Zoldo, Val Fiemme and the small but charming valleys of Codalonga and Costeana. The area is dominated by the imposing and solemn Pelmo massif, one of the most characteristic peaks in the Dolomites, its stunning form resembling a giant throne (it is even known as the “Caregon”, or “Big Chair”). The overall effect of the mountain chains is truly spectacular and the scenery and views that can be enjoyed from Passo Giau to Croda da Lago represent an icon of the Dolomites. The geological features are also extraordinarily interesting, the impressive succession of rocks and fossils illustrating a history of a period lasting more than 100 million years in exhaustive detail. In particular, the fossil cliff of Mount Cernera - completely covered by dark volcanic sediment - and the subsequent recovery of the reefs after the volcanic crisis provides a natural cross-section of Triassic history which has always been regarded with wonder. The first evidence of the presence of dinosaurs in the area was discovered at the foot of the Lastoi del Formin and Pelmetto – findings that have helped to rewrite the geological history of these mountains. The mountain complex has a wide range of features linked to deformation of the earth’s crust and climatic changes, with examples characteristic of geomorphology linked to the action of ancient glaciers or freezing-thawing. There are also numerous examples of interesting landslide phenomena, such as those at Pelmo or Lastoi di Formin.

Pelmo, Croda da Lago

“From whatever side it be seen, but specially from the E. and S., shows as a gigantic fortress of the most massive architecture, not fretted into minarets and pinnacles, like most of its rivals, but merely defended by huge bastioned outworks, whose walls in many places fall in sheer precipices more than 2,000 ft. The likeness to masonry is much increased by the fact that, in great part, the strata lie in nearly horizontal courses, and hence it happens that many of the steepest faces of the mountain are traversed by ledges wide enough to give passage to chamois and to their pursuers.”

“…next, on the same side as the Pelmo but farther up the valley, appears the Rocchetta – a chain of small conical ranges, like a line of broken battlements, piled high on huge buttresses of dark and pure flint.”

On the facing page: Monte Cernera with the tuff and dark volcanic sandstone resting on the ancient escarpment of the Triassic reef (above); panoramic view of the Croda da Lago, Lastoi di Formin and Cernera mountains (below).
Reaching a height of 3,343 metres at Punta Penia, the Marmolada, known as the “Queen of the Dolomites”, is the highest peak in the Dolomites and has the largest glacier. This range, closed to the E and N by the Cordevole and Avisio valleys, stands in the heart of the Dolomites like a solitary observation post.

Made up mainly of pale limestone and the enormous igneous rock that surrounds here (Padòn, Auta and Monzoni sub-ranges), the Marmolada offers unique scenery and an exceptionally striking panorama. The characteristic morphology of these mountains, typical of the Dolomites, is the result of the contrast between the volcanic base with its gentle undulating forms, covered with meadows and woods, and the wild rocky precipices of the massif above, rising up steeply.

For this reason the Marmolada is a place of striking contrasts and characteristic shapes, from the brilliant white of the glacier stretching over the northern slope, reflected in Lake Fedaia, to the evocative beauty of the southern slope, which plunges nearly 1,000 meters before reaching the scree below, creating one of the most beautiful and demanding rock-faces in the Dolomites.

The mountain is equally interesting from a geological point of view, as it offers an excellent example of a Triassic atoll, with its lagoons rich in fossils. However, it is the relationship with the subsequent volcanic activities and the documentation of tectonic deformation that increases its interest.
This range is very extensive and includes several spectacular mountains: from south to north one can see the Vette Feltrine, the Cimonega-Erera Brendol group, the Monti del Sol, the Schiara and the Talvena, Monte Pizzocco, the Civetta and Moiazza groups, the Pale di San Martino and the Pale of San Lucano.

The area is characterised by a varied landscape: from rock-faces to grasslands and alpine meadows, with rushing streams and quiet pools, glaciers and peat-bogs. This variety is linked to the structure of the area, made up of different types of rock.

The southerly part of the range has a wealth of nature reserves and unspoiled landscapes, often rugged and inaccessible, deep-cut valleys and steep rock-faces. To the north the landscape is more broken and the shape of the mountain range is linked to the presence of one of the largest and most intact fossil cliffs from the Triassic age. From the Coldai in Fedaia, via the Aigen, Pale di San Lucano and Pale di San Martino it is possible to walk – literally – over the atolls of an ancient lagoon that rose up a thousand meters from the seabed.

There are also fascinating colour contrasts, as can be seen in the Val di Gares or San Lucano, as a result of the dark volcanic rock resting on the white banks of the atoll. Above the massive reefs, over the ancient lagoons – now plateaus – there are piles of other rocks forming new mountains and new stories. To the north the landscape is more rugged and inaccessible, deep-cut valleys and steep rock-faces. To the north the landscape is more broken and the shape of the mountain range is linked to the presence of one of the largest and most intact fossil cliffs from the Triassic age. From the Coldai to Pelsa, via the Agner, Pale di San Lucano and Pale di San Martino it is possible to walk – literally – over the atolls of an ancient lagoon that rose up a thousand meters from the seabed.

There are also fascinating colour contrasts, as can be seen in the Val di Gares or San Lucano, as a result of the dark volcanic rock resting on the white banks of the atoll. Above the massive reefs, over the ancient lagoons – now plateaus – there are piles of other rocks forming new mountains and new stories. To the north the landscape is more rugged and inaccessible, deep-cut valleys and steep rock-faces. To the north the landscape is more broken and the shape of the mountain range is linked to the presence of one of the largest and most intact fossil cliffs from the Triassic age. From the Coldai to Pelsa, via the Agner, Pale di San Lucano and Pale di San Martino it is possible to walk – literally – over the atolls of an ancient lagoon that rose up a thousand meters from the seabed.

There are also fascinating colour contrasts, as can be seen in the Val di Gares or San Lucano, as a result of the dark volcanic rock resting on the white banks of the atoll. Above the massive reefs, over the ancient lagoons – now plateaus – there are piles of other rocks forming new mountains and new stories. To the north the landscape is more rugged and inaccessible, deep-cut valleys and steep rock-faces. To the north the landscape is more broken and the shape of the mountain range is linked to the presence of one of the largest and most intact fossil cliffs from the Triassic age. From the Coldai to Pelsa, via the Agner, Pale di San Lucano and Pale di San Martino it is possible to walk – literally – over the atolls of an ancient lagoon that rose up a thousand meters from the seabed.

There are also fascinating colour contrasts, as can be seen in the Val di Gares or San Lucano, as a result of the dark volcanic rock resting on the white banks of the atoll. Above the massive reefs, over the ancient lagoons – now plateaus – there are piles of other rocks forming new mountains and new stories. To the north the landscape is more rugged and inaccessible, deep-cut valleys and steep rock-faces. To the north the landscape is more broken and the shape of the mountain range is linked to the presence of one of the largest and most intact fossil cliffs from the Triassic age. From the Coldai to Pelsa, via the Agner, Pale di San Lucano and Pale di San Martino it is possible to walk – literally – over the atolls of an ancient lagoon that rose up a thousand meters from the seabed.

There are also fascinating colour contrasts, as can be seen in the Val di Gares or San Lucano, as a result of the dark volcanic rock resting on the white banks of the atoll. Above the massive reefs, over the ancient lagoons – now plateaus – there are piles of other rocks forming new mountains and new stories. To the north the landscape is more rugged and inaccessible, deep-cut valleys and steep rock-faces. To the north the landscape is more broken and the shape of the mountain range is linked to the presence of one of the largest and most intact fossil cliffs from the Triassic age. From the Coldai to Pelsa, via the Agner, Pale di San Lucano and Pale di San Martino it is possible to walk – literally – over the atolls of an ancient lagoon that rose up a thousand meters from the seabed.

There are also fascinating colour contrasts, as can be seen in the Val di Gares or San Lucano, as a result of the dark volcanic rock resting on the white banks of the atoll. Above the massive reefs, over the ancient lagoons – now plateaus – there are piles of other rocks forming new mountains and new stories. To the north the landscape is more rugged and inaccessible, deep-cut valleys and steep rock-faces. To the north the landscape is more broken and the shape of the mountain range is linked to the presence of one of the largest and most intact fossil cliffs from the Triassic age. From the Coldai to Pelsa, via the Agner, Pale di San Lucano and Pale di San Martino it is possible to walk – literally – over the atolls of an ancient lagoon that rose up a thousand meters from the seabed.
This is one of the most wild and unspoiled areas in the Dolomites, where nature dominates and the scenery is magnificent. The mountain range is compact, being enclosed between the Piave, the upper part of the Tagliamento, the Val Tramontina and Val Cellina. It is a range that reveals itself gradually, on passing the imposing bastions surrounding and protecting it. A walk through the Val Cimoliana, Val Poschiadea, and Val Settimana or following the evocative Truoi dai Sclops (Gentian Trail) makes it possible to discover unexpected landscapes. The view of the solitary Campanile di Val Montanaia, at the centre of a glacial basin and surrounded by the pinnacles of the Monfalconi mountains, is truly extraordinary and is one of the symbols of these mountains. The geology of these areas is dominated by Dolomitic rock from the Upper Triassic and by the processes that caused the large tidal plain of the Dolomia Principale to break up during the Jurassic, later becoming deep sea as seen in the Val di Suola.

The peculiarities of the relief are particularly spectacular, partly because the area is still almost wild, with a morphology that shows very little or no human activity, with the remains of ancient glacial modeling, scree slopes and cones, landslide phenomena and so forth carved into the landscape like an educational tool, to form a dynamic and open-air geomorphology museum. At the edge of the system the Vajont landslide is observable in all its grandeur and drama.

Dolomiti Friulane and d’Oltre Piave

Southwards the valley falls through steep gorges, by Perarolo and Longarone, into the rich Belluno country. An abrupt mountain range, peaked above, and wooded below, walls in the eastern side of the Piave Valley. It conceals in its recesses a wild Dolomitic chain, which strikes the sight at intervals – as from Domegge, already mentioned, and lower down, where the weird form of Monte Duraino (sic), its loftiest member, overhangs Perarolo.”

(Josiah Gilbert, George Cheetham Churchill, The Dolomite Mountains, 1864)

“In the character of the magnificent scenery of the Friulian mountains around Cadore, may be discovered the type of the landscapes and backgrounds of many of Titian’s pictures.”

(John Murray, A Handbook for Travellers in Southern Germany, 1837)

Cima dei Preti (2,706 m)

Duranno (2,652 m)

Cridola (2,581 m)

Cima Monfalcon (2,548 m)

Spalti di Toro (Cadin di Toro 2,386 m)

Campanile di Val Montanaia (2,173 m)

“It’s a vision I will never forget! White and dark clouds thickening from the north, hyperrrhaphly the lift is rushing down the slopes, with them come life and excitement, the excitement of the lift, and vice versa. The sky seems to be a vast sea, as there are no clouds. The lift will carry you over the vastness of the sky and you will see an hour before sunrise. From this moment, you will listen to the muffled sound of the lift and of the clouds, the clouds will become closer and you will feel the earth beneath your feet. Suddenly the lift will stop and you will feel the warmth of the earth beneath your feet. You will be able to hear the sounds of the world and of the clouds, the sounds of the sky and the sounds of the earth. Suddenly you will feel the heat of the earth beneath your feet.”

Above: the pinnacles of Spalti di Toro and the Campanile di Val Montanaia.

On the right: the majestic outline of Cridola.

On the left: the Val Montanaia with the famous Campanile in the middle.
The Northern Dolomites is the name given to the largest of the nine areas making up the Dolomites heritage site. They include some of the most famous mountain ranges in the Alps: the Dolomiti di Sesto/Sextner Dolomiten, the Cadini, Brauner/Prags, Fanes and Senso/Sennes mountains, the Croda Rossa/Hohe Gaisl, the Tofane, Monte Cristallo, Antelao, Sorapis and the Marmarole. The entire complex is bounded by the mountainous south tyrolean valleys of Pusteria/Pustertal, Sesto/Sexten, Badia/Gadertal, San Cassiano/St. Kassian and to the Ampezzo and Cadore valleys of the Rivers Boite and Piave, while the Vals di Fassa cuts in from the west between the Marmarone and Cadini groups like a wedge.

It is a varied range, broken up by peaks, plateaus and lakes, set like jewels into the rocks and the woods. It also offers a succession of exceptionally evocative and fantastic landscapes that have given rise to ancient legends and whose beauty cannot leave one unaffected.

In geological terms, the Dolomiti Settentrionali/Nördliche Dolomiten offer the most complete stratigraphic sequence found in the Dolomites, from metamorphic bedrock, dating back to an old mountain range flattened at the beginning of the Permian, up to the most recent Oligo-Miocene outcrop (about 30 million years ago) of Monte Parei. The succession of different environments characterising the geological history of the Dolomites is extraordinary, from the deserts of the Permian era to the tropical reefs and seabed of the Triassic, the lagoons and beaches of the Jurassic and the unfathomable depths of the Cretaceous. The documentation of the geological past is also illustrated at some of the most important fossil sites in the world. The plant deposits from the Anisian beds of Prags fossils from the San Cassiano/St. Kassian Formation, the coral of the Alpe di Specie, the oldest amber in the Mesozoic, the megalodons in the Dolomia Principale, the aberrant ammonites of the Puez marls or the bears on the Conturines are just some examples of the extraordinary palaeontological wealth of these mountains. The geological phenomena that have made the marine rock of the Dolomites into mountains can be seen in the folds, faults and corrugations characterising these areas.

In this vast dolomite system one can see a wide range of geomorphological processes: from phenomena linked to deformation of the earth’s crust, as demonstrated by high energy of the relief and from a series of fault scarps, morphoclimatic ones, bearing many signs of ancient modeling by ice, karstic ones, on plateaus above Ampezzo, as well as morphodynamic ones, some ongoing, with several examples of landslide phenomena.

Formation, the soal of the Alps of Spacce, the oldest amber in the Mesozoic, the megadols in the Dolomiti Principale, the abrupt annexe of the Puez morro the basins on the Conturines are just some examples of the extraordinary paragenetic wealth of these mountains. The geological phenomena that have made the marine rock of the Dolomites into mountains can be seen in the folds, faults and corrugations characterising these areas. In this vast dolomite system one can see a wide range of geomorphological processes, from phenomena linked to deformation of the earth’s crust, as demonstrated by high energy of relief and from a series of fault scarps, morphoclimatic ones, bearing many signs of ancient modeling by ice, karstic ones, on plateaus above Ampezzo, as well as morphodynamic ones, some ongoing, with several examples of landslide phenomena.
This range is relatively compact. It is bounded to the S by the Val Gardena/Grödnertal, to the E by the Val Badia/Gadertal and to the N by the beautiful and unspoilt Val di Funes/Villnösstal.

The area is characterised by two types of landscape, representing the typical images of the Dolomites: the northern area is dominated by two massifs standing alongside each other, Odle d’Eores/Aferer Geisler with the Sass de Putia/Peitler Kofel and the Odle di Funes/Villnösser Geisler with the San Rijan, documenting the original isolated reefs, which have now become jagged crests and imposing remnants of Dolomitic rock. The southern area (Gardenaccia), is instead occupied by the vast karst plateau at an altitude of around 2,500 metres surrounding the Col de Puez/Puezspitze, adorned with meadows and magnificent alpine lakes. More than plateaus, characterised by grey rocks in an almost lunar landscape, there are the pyramids of dark rock, such as the Col de la Soné, which add further interest to a range which already has a wealth of unique characteristics in terms of landscape and geology. The geological aspects are unusual: the geological succession is among the most complete in the Dolomites and tectonic deformation is very slight. The period dominated by tropical atolls and reefs is fully documented, while later events relating to the period of sinking that took place during the Jurassic and Cretaceous, leading to these areas becoming pelagic seamounts, are easily visible and clear.

The forms of relief are particularly related to structural features: a high energy of the relief in the northern sector and limestone plateau morphology in the southern one. There are many morphoclimatic vestiges, generated by the glaciers, together with evidence of landslides dating back several thousand years ago and still active today.

"Come closer please, examine this spectacle which is without a doubt one of the most beautiful, powerful and extraordinary things that this planet has to offer ... Is it real or is it a dream?"
Dino Buzzati, Le montagne di vetro, 1956

"O the mind, mind has mountains; cliffs of frightful, sheer, no-man-fathomed. Hold them cheap may who ne'er hung there."
Gerard M. Hopkins, "No worst, there is none", 1885

On the facing page: the Sass Rigais provides a cross-section of the geological history of these mountains, which goes from the arid plains and lagoons of the Permian era to the tropical reefs of the Middle Triassic (on the left). The karst tableland of the Gardenaccia, with the characteristic Col de la Soné, made up of Puez marls from the Cretaceous period (on the right).
This mountain range is one of the most extensive and evocative in the Dolomites, characterised not so much by mighty massifs, as by a magnificent combination of sharp pointed peaks and vast rock faces, illuminated by the iridescent pink and reddish light of the setting sun and by magnificent lakes reflecting the surrounding peaks. The particularly spectacular landscape is characterised by extremely distinct mountains, whose profiles are recognised throughout the world, such as the Torri del Vajolet/Vajolettürme, Campanili del Latemar and Sciliar/Schlern. Catinaccio/Rosengarten and Sciliar/Schlern are rocky edges facing NW near a terrace overlooking the Vajont and Sauris/Karrenboden valleys, bordered to the south by the Val di Fassa and the Val Duron. Depending on the viewpoint, the mountains change their appearance radically, while maintaining a distinctive profile. For example, when seen from Bolzano/Bozen the Sciliar/Schlern looks like a giant monolith with a flat roof, from which two separate pinnacles emerge, the Santner and Euringer peaks, becoming one of the emblems of South Tyrol. However, when viewed from the Alpe di Siusi/Seiser Alm, a gigantic scarp is evident, joining the pastures at the same angle at which the atoll was once linked to the sea bed.

The Catinaccio-Rosengarten has the form of an endless series of peaks and sharp needles radiating from the Torri del Vajolet/Vajolettürme, illustrating the movement of an island towards the sea 240 million years ago.

Another spectacular feature is the constant change in colour as the day progresses – from pink to red and then purple towards the evening – which has given rise to many legends and helped make this mountain the kingdom of King Laurin. The Latemar, on the other hand, stands isolated between the Val di Fiemme in Trentino and the Val d’Ega/Eggental in South Tyrol. There is an extraordinary view of this range from Passo Costalunga/Karerpass, where the lone peak, with the horizontal lines of the lagoon sediment and the sloping profile of the scarp reflected in the waters of Lake Carezza/Karersee.

While the landscape is magnificent, the purely geological features are absolutely fascinating.

The system is characterized by significant morphological geodiversity: significant energy of the relief, a great variety of structural forms of a tectonic and lithological type, numerous elements of palaeoclimatic evidence both glacial and pre-glacial, as well as a wide range of morphodynamic elements of a gravitational type.

Sciliar-Catinaccio/Schlern-Rosengarten, Latemar

Sciliar-Cladenace, Latemar

9,302 hectares

Dolomites – South Tyrol

Provinces:
- Bolzano/Bozen - South Tyrol
- Trento

Trentino Alto Adige (3,300 Meters)

Parco Naturale Sciliar-Catinaccio

Naturpark Schlern-Rosengarten

On the facing page: the cliff of the Sciliar/Schlern, with Punta Santner/Santener Spitze (above) and the Catinaccio/Rosengarten and the Valle del Vajolet/Vajolettal (below).

On the left: the Latemar and Lake Carezza/Karersee.

"Imagine a gigantic amphitheatre or jagged, cliff premices, standing 3,000 feet above the opposite side, in a depth almost as great, and from the height of 3,000 feet feel above the sea. Let the sides of the amphitheatre swing towards us in an endless concave path on half of his horizon, though with sharp angles; then let the sides suddenly meet and unite, and become a somewhat rounded house-like mass, while still having a vast path of upright pointy spires, an almost square gap is indentured in a cliff of this erected and still sharp but a rather monotonous view of the impressiveness of the scene." (Josiah Gilbert, George Chetham Churchill, The Dolomite Mountains, 1864)

"Looking upwards through an opening at one of these dark corners, we saw again the Latemar spires, which we had lost sight of since leaving Welschenhofen. They stood high in air, and bathed in sunlight, their front worn into singular resemblance to the pipes of a gigantic organ." (Josiah Gilbert, George Chetham Churchill, The Dolomite Mountains, 1864).

On the facing page:
- Catinaccio d’Antermoia/Antermoi (3,002 Meter)
- Catinaccio/Rosengarten/Ciadenac (2,981 Meter)
- Cima Scalieret (2,887 Meter)
- Croda di Lausa (2,876 Meter)
- Campanili del Latemar (2,842 Meter)
- Cima Val Bona (2,822 Meter)
- Molignon (2,820 Meter)
- Torri del Vajolet/Vajolettürme (2,813 Meter)
- Roda di Vael/Rotwand (2,806 Meter)
- Corno d’Ega/Eggentaler Horn (2,799 Meter)
- Schenon (2,791 Meter)
- Cima di Terrarossa/Roterdspitz (2,580 Meter)
- Punta Santner/Santner Spitze (2,413 Meter)
The mountains surrounding the Bletterbach lie at the mouth of a deep-cut valley joining the Vall d’Adige/Etschtal just S of Bolzano/Bozen, bounded by the villages of Aldein and Badia/Badia, Monte Pausabella/Berg Schönrast and the Oclini-Jochgrimm pass. The range consists of a gorge carved out by the river over the millennia, cutting deeply into the succession of layered rocks underlying the Dolomites mountains. The valley, several miles long and up to 400 metres deep, reveals a cross-section of rock ranging from the Permian to the Middle Triassic and therefore offers detailed information on the sequence of events at the beginning of the geological history of the Dolomites. It is one of the few places giving an immediate visual representation of the geological history of the Dolomites, made up of successive layers of sedimentation, and offers extraordinary evidence of the distant past. Impressed in the layers of rock, one can find astonishingly detailed documentation of the Upper Permian, the gradual progress of the Tethys Sea across the arid plains, the climate, plants and the footprints of the reptiles and amphibians which lived in these places, making the place a site of unparalleled geological value.

Bletterbach
area: 271 hectares
province: Bolzano/Bozen - South Tyrol
natural monument: Bletterbach

Footprint of primitive reptile (Pachipes dolomiticus).

The Bletterbach is characterised by the spectacular gorge carved out by the stream, highlighting in particular modelling processes linked to selective erosion of the rock. It is far from the better known peaks, however with a drop of more than 900 metres from the peak of the Corno Bianco/Weißhorn (2,317 metres) to the bottom of the gorge, it is one of the most exciting representations of the origins of the Dolomites over time.

On the facing page: the gorge can be visited through a network of trails that run along the bottom of the canyon (left); aerial view of the gorge (right). On the left: the top of the Corno Bianco; Weißhorn is a splendid study of the footprints of the reptiles and amphibians which lived in these places, making the place a site of unparalleled geological value.
The Brenta Dolomites lie to the west of the River Adige in the westernmost part of the Dolomites and take the form of an island of dolomite rock, bounded to the west by the Giudicarie fault, a massive tectonic line marking the separation between the carbonate platforms and the intrusive Adamello and Presanella mountain ranges.

The range runs N-S for around 40 kilometres and is 12 kilometres wide from E to W. Unlike other Dolomite ranges marked by their slender lines and plasticity, this magnificent ridge of calcareous rock and dolomite has majestic and austere forms, with rock faces culminating in peaks and sharp angles of differing shapes and sizes. The Campanil Basso is a pinnacle which has always proved particularly popular with generations of mountaineers and mountain enthusiasts. Selective erosion has shaped the massive banks of dolomitic outcrop, carving out this slender pinnacle nestling in the heart of the Brenta mountains, opposite the Cima Tosa and the Campanile Alto, at the top of the Brenta valley.

From the geological point of view, this mountain range documents the long and complex history from the Permian to the Jurassic. Evidence of Norian-Liassic succession is particularly well-preserved, two presenting unusual features and illustrating the transition from what is known as the Trento Platform to the Lombard Basin. Every phase in the structural evolution and stratigraphy of this period is clearly outlined, as are the spectacular tectonic features.

In particular, from geomorphological point of view, the system presents three emblematic situations of geomorphodiversity: a wide range of landforms related to the tectonic features at both a medium and large scale, well-developed articulated karst, with epigean and hypogean forms, as well as exemplary morphoclimatic evidence case studies, both relict and active.

In several of the preceding routes, reference has been made to a considerable mountain-mass, extending on the E. side of Val Rendena, for which the collective name Brenta Alta is here adopted. It is composed of a brittle dolomitic limestone \[\ldots\], which by exposure to the weather assumes various tints, from pale grey to rich pink and murky red. By its extraordinary boldness and singularity of form, this range fascinates all mountaineers who approach it, yet it is but very lately that it has been even partially explored. It may best be described as an irregular group of towers of rock, varying in height from 9,500 to nearly 11,000 ft., that rise out of a huge broken mass of limestone, which is penetrated in some directions by deep valleys and recesses. As a general rule, the towers are isolated, showing on one or more sides absolutely vertical faces of rock, and each is capped by a covering of névé (sic).”

John Ball, The Alpine Guide, 1866

area: 11,135 hectares
province: Trento
parks: Parco Naturale Adamello-Brenta
(UNESCO Geopark Adamello Brenta)

Cima Tosa (3,173 m)
Cima Brenta (3,150 m)
Crozzon di Brenta (3,118 m)
Cima Vallesinella (3,114 m)
Cima d’Ambiez (3,102 m)
Cima Mandron (3,040 m)
Spallone dei Massodi (2,999 m)
Cima Falkner (2,999 m)
Cima Vallon (2,968 m)
Cima Brenta Alta (2,960 m)
Cima Agola (2,959 m)
Cima d’Armi (2,951 m)
Campanile di Brenta (2,937 m)
Campanil Basso (2,883 m)

Above: Crozzon di Brenta.
On the right: Cima Tosa and central part of Brenta chain.
On the facing page: Torre di Brenta and Campanil Basso.
Management of the property was extensively debated during the nomination process, the work of the institutions (Provinces and Regions) representing a common effort designed to achieve the inclusion of the Dolomites in the UNESCO World Heritage List. This was aimed not only at presenting the area of the Dolomites as a unique example of its kind, with its specific geographical, geomorphological and landscape characteristics, but also at establishing consistent and uniform procedures for administering the property, taking account of the skills and managerial autonomy of each local government.

The UNESCO “Dolomiti-Dolomiten-Dolomites-Dolomitis” Foundation, established by the Provinces and Regions involved in the recognition, has the objective of ensuring coordinated management of the property, in an area with a range of different kinds of institutions at different levels.

With a view to standardising policy for the management of the UNESCO Dolomites property, the Foundation, as a single contact for the UNESCO World Heritage Committee, will thus ensure that the overall management strategy is consistent with the maintaining of universal values, through its triennial reports.

With this in mind, the governance strategy of the UNESCO Dolomites property focuses on three main aspects - conservation, communication and promotion - around which a coordination plan for local management will be developed. The main themes - in relation to which the activities in the various mountain ranges making up this serial property will be planned - then be subdivided into related objectives involving:

- conservation of the landscape and geological heritage;
- management of tourism flows, paying particular attention when these have reached or exceeded limits of toleration;
- communication, information and training with respect to the values of the heritage;
- sustainable development, environmental education and scientific research.

The strategy aims to create a network of cooperation between local areas and institutions already responsible for the management of the Dolomites, in order to ensure the effectiveness and adequacy of protection measures for the Dolomites, to ensure their aesthetic, landscape and geological-geomorphological values are passed on.

The UNESCO Dolomites are an area high in the mountains, whose morphology represents a natural limit in terms of intensive exploitation of resources by man. Most of these mountains remain inaccessible for long periods of the year (from November to May) due to adverse climatic conditions. The activities to be carefully monitored are the pressure on ecosystems, the exploitation of natural resources and non-productive uses.

The use of the area for crops-forestry-pasture is an important characteristic of the economy of this Dolomite region. However, this type of use is closely regulated and mainly concerns just some parts of the buffer zones.

The Dolomites are subdivided into “core zones” (in yellow) – namely areas which make up the World Heritage Property and “buffer zones” (in green), which make up a protective band with regard to possible risks which may threaten the integrity of the area.